

Apr 1-12:23 PM

7.4 Logarithms

IF
$$2^2 = 4$$
 and $2^3 = 8$,

THEN
$$2^x = 6$$
?

How do I algebraically get the unknown when its an exponent?

Feb 20-9:45 AM

7.4 Logarithmic functions

Logarithm Defined:

"the exponent that indicates the power to which a base number is raised to produce a given number <the *logarithm* of 100 to the base 10 is 2>"

> In simpler terms - a logarithm is an exponent

> > Feb 18-10:10 PM

Base Exponent = Answer \rightarrow Exponent Form 3 = 8

logBaseAnswer = Exponent >Logarithmic Form

loga 8 = 3

We say "log base two of 8 equals 3

Feb 22-2:12 PM

FIRST JOB is re-writing equations from exponential to logarthmic form and back

Exponential Form Logarithmic Form

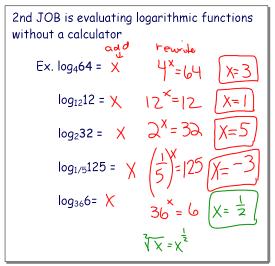
a.
$$\log_2 8 = 3$$
 $2^3 = 8$

$$2^3 = 8$$

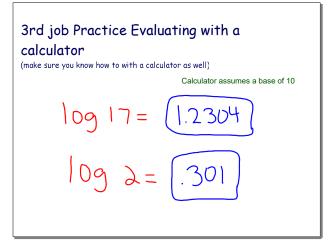
b.
$$\log_4 1 = 0$$
 $4^0 = 1$

$$4^0 = 1$$

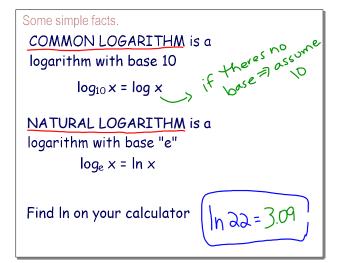
c.
$$\log_{12} 12 = 1$$
 $12^1 = 12$

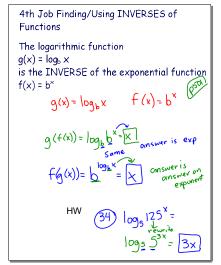

$$12^1 = 12$$

d.
$$\log_{1/4} 4 = -1$$
 $\left(\frac{1}{4}\right)^{-1} = 4$


$$\left(\frac{1}{4}\right)^{-1} = 4$$

Rewrite the equation in exponential form. 1. $\log_3 81 = 4$ **2.** $\log_7 7 = 1$ 3. $\log_{14} 1 = 0$


Feb 18-10:11 PM Feb 22-2:17 PM


Feb 22-2:22 PM

Feb 22-2:25 PM

Feb 22-2:26 PM

Feb 22-2:31 PM

If Exponential and Logarithmic Functions are Inverses to one another ... we can use this to help us solve.

$$g(x) = \log_b x$$

$$f(x) = b^x$$

$$g(f(x)) = \log_b b^x = x$$

$$f(g(x)) = b^{\log_b x} = x$$

Your book is not your friend in the section.

It is your enemy.

Mar 31-12:45 PM Mar 31-12:42 PM

Apr 27-8:52 AM

Find the inverse:

1st Switch x & y then switch forms

1. $y = 6^{x}$ $x = 6^{y}$ 2. $y = \ln(x+3)$ $x = \ln(y+3)$ $e^{x} = y + 3$ $e^{x} - 3 = y$

Feb 22-3:55 PM

HW Pg 503 #3-6 #8-19 #24,25 properties #28-31 no stress

Apr 6-11:44 AM